Effects of homology length in the repeat region on minus-strand DNA transfer and retroviral replication.
نویسندگان
چکیده
Homology between the two repeat (R) regions in the retroviral genome mediates minus-strand DNA transfer during reverse transcription. We sought to define the effects of R homology lengths on minus-strand DNA transfer. We generated five murine leukemia virus (MLV)-based vectors that contained identical sequences but different lengths of the 3' R (3, 6, 12, 24 and 69 nucleotides [nt]); 69 nt is the full-length MLV R. After one round of replication, viral titers from the vector with a full-length downstream R were compared with viral titers generated from the other four vectors with reduced R lengths. Viral titers generated from vectors with R lengths reduced to one-third (24 nt) or one-sixth (12 nt) that of the wild type were not significantly affected; however, viral titers generated from vectors with only 3- or 6-nt homology in the R region were significantly lower. Because expression and packaging of the RNA were similar among all the vectors, the differences in the viral titers most likely reflected the impact of the homology lengths on the efficiency of minus-strand DNA transfer. The molecular nature of minus-strand DNA transfer was characterized in 63 proviruses. Precise R-to-R transfer was observed in most proviruses generated from vectors with 12-, 24-, or 69-nt homology in R, whereas aberrant transfers were predominantly used to generate proviruses from vectors with 3- or 6-nt homology. Reverse transcription using RNA transcribed from an upstream promoter, termed read-in RNA transcripts, resulted in most of the aberrant transfers. These data demonstrate that minus-strand DNA transfer is homology driven and a minimum homology length is required for accurate and efficient minus-strand DNA transfer.
منابع مشابه
Utilization of nonviral sequences for minus-strand DNA transfer and gene reconstitution during retroviral replication.
Minus-strand DNA transfer, an essential step in retroviral reverse transcription, is mediated by the two repeat (R) regions in the viral genome. It is unclear whether R simply serves as a homologous sequence to mediate the strand transfer or contains specific sequences to promote strand transfer. To test the hypothesis that the molecular mechanism by which R mediates strand transfer is based on...
متن کاملUtilization of nonhomologous minus-strand DNA transfer to generate recombinant retroviruses.
During reverse transcription, minus-strand DNA transfer connects the sequences located at the two ends of the viral RNA to generate a long terminal repeat. It is thought that the homology in the repeat (R) regions located at the two ends of the viral RNA sequences facilitate minus-strand DNA transfer. In this report, the effects of diminished R-region homology on DNA synthesis and virus titer w...
متن کاملHepadnavirus reverse transcription initiates within the stem-loop of the RNA packaging signal and employs a novel strand transfer.
Replication of the hepadnavirus genome occurs by reverse transcription of an RNA pregenome and is mediated by the viral polymerase; the polymerase is also required for packaging of the pregenome through interaction with the RNA packaging signal, epsilon. Previous work suggested that reverse transcription of minus-strand DNA initiates within the sequence element DR1 (direct repeat 1) and that di...
متن کاملRNA sequences controlling the initiation and transfer of duck hepatitis B virus minus-strand DNA.
Hepadnaviruses replicate by reverse transcription of an RNA pregenome. Reverse transcription initiates within the stem-loop (SL) of the epsilon RNA packaging signal and is discontinuous: the nascent minus-polarity DNA is transferred to direct repeat 1 (DR1) at the 3' end of the pregenomic RNA prior to extensive elongation. In this study we analyzed the initiation and transfer of duck hepatitis ...
متن کاملA novel cis-acting element facilitates minus-strand DNA synthesis during reverse transcription of the hepatitis B virus genome.
Hepadnaviruses replicate through reverse transcription of an RNA pregenome, resulting in a relaxed circular DNA genome. The first 3 or 4 nucleotides (nt) of minus-strand DNA are synthesized by the use of a bulge in a stem-loop structure near the 5' end of the pregenome as a template. This primer is then transferred to a complementary UUCA motif, termed an acceptor, within DR1* near the 3' end o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 75 2 شماره
صفحات -
تاریخ انتشار 2001